久久一区二区三区精品-久久一区二区明星换脸-久久一区二区精品-久久一区不卡中文字幕-91精品国产爱久久久久久-91精品国产福利尤物免费

英文小說(shuō)怎么寫(xiě)?根據(jù)這6條套路來(lái)寫(xiě)

雕龍文庫(kù) 分享 時(shí)間: 收藏本文

英文小說(shuō)怎么寫(xiě)?根據(jù)這6條套路來(lái)寫(xiě)

If you're ever reading a book or watching a movie and get the distinct feeling you've come across the story before – or even better, can predict exactly what's going to happen next –there could be a good reason for that.

如果你在讀書(shū)或者看電影時(shí)清晰地感覺(jué)到這個(gè)故事似曾相識(shí)——或者更厲害的,你能準(zhǔn)確預(yù)測(cè)出后面會(huì)發(fā)生些什么——嗯,這種感覺(jué)可不是毫無(wú)依據(jù)的。

Computer scientists have sifted through the language of more than 1,700 works of fiction and discovered that English literature consists of just six kinds of emotional arcs that make up nearly all of the most well-known stories.

計(jì)算機(jī)科學(xué)家們?cè)跍y(cè)查了1700多部小說(shuō)后,發(fā)現(xiàn)英語(yǔ)文學(xué)中只包含六種情感弧線(xiàn),而幾乎所有的名著都是由它們構(gòu)成的。

While literary theorists have for centuries characterised and counted the basic plots and structures that writers use in stories, it's unlikely there's ever been such a rigorous scientific analysis of English fiction like this before.

盡管若干世紀(jì)以來(lái),文學(xué)理論家們一直在研究作家寫(xiě)故事時(shí)應(yīng)用的基本情節(jié)和結(jié)構(gòu),分析它們的特征,歷數(shù)其種類(lèi),但好像此前從來(lái)沒(méi)有針對(duì)英語(yǔ)小說(shuō)做過(guò)如此嚴(yán)謹(jǐn)?shù)目茖W(xué)分析。

Researchers from the Computational Story Laboratory at the University of Vermont mined the complete text of some 1,737 fiction works available on Project Gutenberg, an online collection of more than 50,000 digital books in the public domain. By analysing the sentiment of language used in chunks of text 10,000 words long in each of these texts, the researchers were able to register the emotional ups and downs for the stories as a whole. Negative words like "poverty", "dead", and "punishment" dragged the sentiment down, while positive terms like "love", "peace", and "friend" brought it up.

佛蒙特大學(xué)“計(jì)算機(jī)故事實(shí)驗(yàn)室”的研究員們從古登堡計(jì)劃(Project Gutenberg是一個(gè)線(xiàn)上書(shū)庫(kù),內(nèi)含5萬(wàn)多本公版電子書(shū))上找到了大約1737部全文小說(shuō),他們將這些文本分成文本塊,每個(gè)文本塊包含1萬(wàn)個(gè)單詞,然后分析其中的語(yǔ)言情感,最終得出故事整體的情感起伏。“貧窮”、“死亡”、“懲罰”等消極詞匯會(huì)使情感變得低落,而“愛(ài)情”、“和平”、“友誼”之類(lèi)積極詞匯會(huì)使情感變得高昂。

Doing this for over 1,700 books and charting the dynamics of each text, the team discovered that all stories basically boil down to one of a set number of emotional patterns. "We find a set of six coretrajectories which form the building blocks of complex narratives," the authors write in their study.

研究團(tuán)隊(duì)在按照這種方法將1700多本書(shū)逐本分析、并畫(huà)出每本書(shū)的動(dòng)態(tài)曲線(xiàn)圖之后,他們發(fā)現(xiàn)所有的故事最后基本上都會(huì)歸結(jié)到幾種情感模式中的一種。研究報(bào)告中寫(xiě)道:“我們發(fā)現(xiàn)有6種核心的情感軌跡,它們是構(gòu)成復(fù)雜敘事大廈的磚瓦。”

According to the researchers, those six core emotional arcs are:

根據(jù)研究人員的說(shuō)法,這6種核心情感弧線(xiàn)包括:

· "Rags to riches" (An ongoing emotional rise, eg. Alice's Adventures Under Ground)

“白手起家型”(持續(xù)的情感上漲,如《愛(ài)麗絲地下奇遇記》)

· "Tragedy, or riches to rags" (An ongoing emotional fall, eg. Romeo and Juliet)

“悲劇型”或者“家道中落型”(持續(xù)的情感下落,如《羅密歐與朱麗葉》)

· "Man in a hole" (A fall followed by a rise)

“穴人型”(先下落后上漲)

· "Icarus" (A rise followed by a fall)

“伊卡洛斯型”(先上漲后下落)

· "Cinderella" (Rise–fall–rise)

“灰姑娘型”(上漲-下落-上漲)

· "Oedipus" (Fall–rise–fall)

“俄狄浦斯型”(下落-上漲-下落)

Interestingly, based on download statistics from Project Gutenberg, the researchers say the most popular stories are ones that use more complex emotional arcs, with the Cinderella and Oedipus arcs registering the most downloads. Also popular are works that combine these core arcs together in new ways within one story, such as two sequential "Man in a hole" arcs stuck together, or the "Cinderella" arc coupled with a tragic ending.

有趣的是,研究人員說(shuō):根據(jù)從古登堡計(jì)劃下載的數(shù)據(jù)來(lái)看,最受歡迎的故事往往應(yīng)用了較為復(fù)雜的情感弧線(xiàn),“灰姑娘型”和“俄狄浦斯型”囊括了大多數(shù)下載作品。另外,還有一些很受歡迎的作品是以一種新的方式將幾種情感弧線(xiàn)結(jié)合在一個(gè)故事里,比如說(shuō)連續(xù)出現(xiàn)兩個(gè)“穴人型”,或者在“灰姑娘型”后面加上一個(gè)悲劇結(jié)尾。

If you're ever reading a book or watching a movie and get the distinct feeling you've come across the story before – or even better, can predict exactly what's going to happen next –there could be a good reason for that.

如果你在讀書(shū)或者看電影時(shí)清晰地感覺(jué)到這個(gè)故事似曾相識(shí)——或者更厲害的,你能準(zhǔn)確預(yù)測(cè)出后面會(huì)發(fā)生些什么——嗯,這種感覺(jué)可不是毫無(wú)依據(jù)的。

Computer scientists have sifted through the language of more than 1,700 works of fiction and discovered that English literature consists of just six kinds of emotional arcs that make up nearly all of the most well-known stories.

計(jì)算機(jī)科學(xué)家們?cè)跍y(cè)查了1700多部小說(shuō)后,發(fā)現(xiàn)英語(yǔ)文學(xué)中只包含六種情感弧線(xiàn),而幾乎所有的名著都是由它們構(gòu)成的。

While literary theorists have for centuries characterised and counted the basic plots and structures that writers use in stories, it's unlikely there's ever been such a rigorous scientific analysis of English fiction like this before.

盡管若干世紀(jì)以來(lái),文學(xué)理論家們一直在研究作家寫(xiě)故事時(shí)應(yīng)用的基本情節(jié)和結(jié)構(gòu),分析它們的特征,歷數(shù)其種類(lèi),但好像此前從來(lái)沒(méi)有針對(duì)英語(yǔ)小說(shuō)做過(guò)如此嚴(yán)謹(jǐn)?shù)目茖W(xué)分析。

Researchers from the Computational Story Laboratory at the University of Vermont mined the complete text of some 1,737 fiction works available on Project Gutenberg, an online collection of more than 50,000 digital books in the public domain. By analysing the sentiment of language used in chunks of text 10,000 words long in each of these texts, the researchers were able to register the emotional ups and downs for the stories as a whole. Negative words like "poverty", "dead", and "punishment" dragged the sentiment down, while positive terms like "love", "peace", and "friend" brought it up.

佛蒙特大學(xué)“計(jì)算機(jī)故事實(shí)驗(yàn)室”的研究員們從古登堡計(jì)劃(Project Gutenberg是一個(gè)線(xiàn)上書(shū)庫(kù),內(nèi)含5萬(wàn)多本公版電子書(shū))上找到了大約1737部全文小說(shuō),他們將這些文本分成文本塊,每個(gè)文本塊包含1萬(wàn)個(gè)單詞,然后分析其中的語(yǔ)言情感,最終得出故事整體的情感起伏。“貧窮”、“死亡”、“懲罰”等消極詞匯會(huì)使情感變得低落,而“愛(ài)情”、“和平”、“友誼”之類(lèi)積極詞匯會(huì)使情感變得高昂。

Doing this for over 1,700 books and charting the dynamics of each text, the team discovered that all stories basically boil down to one of a set number of emotional patterns. "We find a set of six coretrajectories which form the building blocks of complex narratives," the authors write in their study.

研究團(tuán)隊(duì)在按照這種方法將1700多本書(shū)逐本分析、并畫(huà)出每本書(shū)的動(dòng)態(tài)曲線(xiàn)圖之后,他們發(fā)現(xiàn)所有的故事最后基本上都會(huì)歸結(jié)到幾種情感模式中的一種。研究報(bào)告中寫(xiě)道:“我們發(fā)現(xiàn)有6種核心的情感軌跡,它們是構(gòu)成復(fù)雜敘事大廈的磚瓦。”

According to the researchers, those six core emotional arcs are:

根據(jù)研究人員的說(shuō)法,這6種核心情感弧線(xiàn)包括:

· "Rags to riches" (An ongoing emotional rise, eg. Alice's Adventures Under Ground)

“白手起家型”(持續(xù)的情感上漲,如《愛(ài)麗絲地下奇遇記》)

· "Tragedy, or riches to rags" (An ongoing emotional fall, eg. Romeo and Juliet)

“悲劇型”或者“家道中落型”(持續(xù)的情感下落,如《羅密歐與朱麗葉》)

· "Man in a hole" (A fall followed by a rise)

“穴人型”(先下落后上漲)

· "Icarus" (A rise followed by a fall)

“伊卡洛斯型”(先上漲后下落)

· "Cinderella" (Rise–fall–rise)

“灰姑娘型”(上漲-下落-上漲)

· "Oedipus" (Fall–rise–fall)

“俄狄浦斯型”(下落-上漲-下落)

Interestingly, based on download statistics from Project Gutenberg, the researchers say the most popular stories are ones that use more complex emotional arcs, with the Cinderella and Oedipus arcs registering the most downloads. Also popular are works that combine these core arcs together in new ways within one story, such as two sequential "Man in a hole" arcs stuck together, or the "Cinderella" arc coupled with a tragic ending.

有趣的是,研究人員說(shuō):根據(jù)從古登堡計(jì)劃下載的數(shù)據(jù)來(lái)看,最受歡迎的故事往往應(yīng)用了較為復(fù)雜的情感弧線(xiàn),“灰姑娘型”和“俄狄浦斯型”囊括了大多數(shù)下載作品。另外,還有一些很受歡迎的作品是以一種新的方式將幾種情感弧線(xiàn)結(jié)合在一個(gè)故事里,比如說(shuō)連續(xù)出現(xiàn)兩個(gè)“穴人型”,或者在“灰姑娘型”后面加上一個(gè)悲劇結(jié)尾。

信息流廣告 競(jìng)價(jià)托管 招生通 周易 易經(jīng) 代理招生 二手車(chē) 網(wǎng)絡(luò)推廣 自學(xué)教程 招生代理 旅游攻略 非物質(zhì)文化遺產(chǎn) 河北信息網(wǎng) 石家莊人才網(wǎng) 買(mǎi)車(chē)咨詢(xún) 河北人才網(wǎng) 精雕圖 戲曲下載 河北生活網(wǎng) 好書(shū)推薦 工作計(jì)劃 游戲攻略 心理測(cè)試 石家莊網(wǎng)絡(luò)推廣 石家莊招聘 石家莊網(wǎng)絡(luò)營(yíng)銷(xiāo) 培訓(xùn)網(wǎng) 好做題 游戲攻略 考研真題 代理招生 心理咨詢(xún) 游戲攻略 興趣愛(ài)好 網(wǎng)絡(luò)知識(shí) 品牌營(yíng)銷(xiāo) 商標(biāo)交易 游戲攻略 短視頻代運(yùn)營(yíng) 秦皇島人才網(wǎng) PS修圖 寶寶起名 零基礎(chǔ)學(xué)習(xí)電腦 電商設(shè)計(jì) 職業(yè)培訓(xùn) 免費(fèi)發(fā)布信息 服裝服飾 律師咨詢(xún) 搜救犬 Chat GPT中文版 語(yǔ)料庫(kù) 范文網(wǎng) 工作總結(jié) 二手車(chē)估價(jià) 情侶網(wǎng)名 愛(ài)采購(gòu)代運(yùn)營(yíng) 情感文案 古詩(shī)詞 邯鄲人才網(wǎng) 鐵皮房 衡水人才網(wǎng) 石家莊點(diǎn)痣 微信運(yùn)營(yíng) 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 石家莊人才網(wǎng) 銅雕 關(guān)鍵詞優(yōu)化 圍棋 chatGPT 讀后感 玄機(jī)派 企業(yè)服務(wù) 法律咨詢(xún) chatGPT國(guó)內(nèi)版 chatGPT官網(wǎng) 勵(lì)志名言 兒童文學(xué) 河北代理記賬公司 教育培訓(xùn) 游戲推薦 抖音代運(yùn)營(yíng) 朋友圈文案 男士發(fā)型 培訓(xùn)招生 文玩 大可如意 保定人才網(wǎng) 黃金回收 承德人才網(wǎng) 石家莊人才網(wǎng) 模型機(jī) 高度酒 沐盛有禮 公司注冊(cè) 造紙術(shù) 唐山人才網(wǎng) 沐盛傳媒
主站蜘蛛池模板: 精品一区二区久久久久久久网站 | 精品久久久久久影院免费 | 一级做a爰片性色毛片男 | 成人午夜私人影院入口 | 国产人成免费视频 | 国产精品免费看久久久 | 成人欧美在线 | 国产网址在线 | 一级女性全黄生活片免费 | 乱子伦农村xxxx | 国产成人久久久精品毛片 | 免费人成在线观看网站 | 日韩欧美一区二区三区在线 | 一区二区三区四区视频 | 日韩看片 | 男女性生活网站 | 日韩精品福利视频一区二区三区 | 久久伊人网站 | 国产成人精品aaaa视频一区 | 国产精品久久久久久搜索 | 久久精品国产99国产 | 国产成人咱精品视频免费网站 | 国产成人女人在线视频观看 | 亚洲成人在线免费观看 | 九九热久久免费视频 | 亚洲精品午夜久久久伊人 | 精品一久久香蕉国产二月 | 国产一线视频在线观看高清 | 天海翼精品久久中文字幕 | 精品国产三级a在线观看 | 国产午夜免费福利红片 | 欧美一级片免费 | 国产免费黄色网址 | 黄色毛片视频网站 | 87精品福利视频在线观看 | 国产三级在线观看视频 | 91精品国产免费久久国语蜜臀 | 久色精品 | 欧美在线乱妇一级毛片 | 欧美日韩在线观看一区 | 日韩在线1|